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Abstract Systems with negative Poisson’s ratio (auxetic)

exhibit the unusual characteristic of getting fatter when

stretched and thinner when compressed. Such behaviour is

a scale-independent property and is the result of a coop-

eration between the internal geometry of the system and the

way this deforms when uniaxially stretched. Here, we

analyse the anisotropic mechanical properties for a system

constructed from connected squares which can deform

through changes in length of the sides of the squares

(idealised ‘stretching squares’ model). In particular, we

show that this system may exhibit a negative Poisson’s

ratio which depends on the angle between the squares and

the direction of loading but is independent of the size of the

squares which suggests that this model may be imple-

mented at any scale of structure including the micro- and

nano-level. We also show how this model compares and

complements the existing ‘rotating squares’ model which

also works on a system with the same geometric charac-

teristics and which has been shown to lead to auxeticity in

various classes of materials.

Introduction

Auxetics exhibit the unusual property of expanding in

width when stretched and becoming thinner when com-

pressed, i.e. they exhibit a negative Poisson’s ratio [1].

Although this property is not exhibited in most everyday

materials (commonly used materials have a positive Pois-

son’s ratio), in recent years there has been considerable

work in the field of auxetics which led to the discovery of

this unusual property in various types of materials and

structures [1–34], some of which (e.g. the proposed re-

entrant molecular-level honeycombs [1]) still need to be

synthesised. In all of the auxetics discovered so far, it has

been found that this unusual property can be explained in

terms of geometric features of the structure (the micro/

nanostructure in the case of materials) and the way this

structure deforms when subjected to uniaxial loads (the

deformation mechanism). In fact, research on auxetics has

been characterised by the development of various idealised

models that could be used to explain the presence of

auxeticity. Such models include the re-entrant honeycomb

model which was successfully used to model the behaviour

of auxetic microstructured foams [9–14], ‘nodes and

fibrils’ models which have been used to describe the

behaviour of auxetic microstructured polymers [15–17],

models based on rigid ‘free’ molecules [6–8], models of

various chiral structures [4, 5] and models of systems made

from ‘rotating rigid units’ such as squares [35–37], trian-

gles [38], rectangles [14, 39, 40] or tetrahdera [27] which

have proved to be particularly suitable for explaining the

auxetic behaviour in various classes of materials ranging

from foams [9–14] to silicates [24–32] and zeolites [33,

34].

A ‘rotating rigid units’ model system, which in recent

years has attracted considerable attention, is the one made

from ‘connected squares’, which when stretched, the

squares rotate relative to each other as illustrated in Fig. 1a

[35–37]. Analytical modelling of this idealised ‘rotating

connected squares’ system, where the squares are assumed

to be perfectly rigid and simply rotate relative to each

other, suggests that this system has in-plane on-axis
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Poisson’s ratios, Young’s moduli and compliance matrix

given by:

mR
21 ¼ mR

12

� ��1¼ �1 ð1Þ

ER
1 ¼ ER

2 ¼
8Kh

l2z 1� sinðhÞ½ � ð2Þ

SR ¼ l2z½1� sinðhÞ�
8Kh

1 �1 0

�1 1 0

0 0 0

0

@

1

A ð3Þ

where the superscript ‘R’ is used to indicate that these

expressions refer to the rotation mechanism, l is the length

of a side of the square, z is the out of plane thickness of the

structure, Kh the stiffness coefficient for the hinges and h
the angle between the squares. Note that this system has an

infinite shear modulus due to the assumed perfect rigidity

of the square elements.

These expressions indicate that the Poisson’s ratio of

this system is independent of the initial geometrical con-

formation, i.e. the angles between the squares and the size

of the squares. Furthermore, an off-axis analysis of the

Poisson’s ratio of this system suggests that the in-plane

Poisson’s ratio, when defined,1 is always equal to –1, i.e. it

is independent of the direction of loading. The expressions

also suggest that the Young’s modulus has a finite value

unless h ¼ p
2
; in which case the Young’s modulus diverges

to infinity. This corresponds to the fully opened structure,

and signifies that it cannot be opened any further (see

footnote 1).

Despite the simplicity of the rotating squares model, it

has been shown that this mechanism plays a very important

role for generating auxetic behaviour at various scales,

including the nano- (molecular) level. In fact, force-field

based molecular modelling simulations have shown that

this deformation mechanism can qualitatively explain the

negative Poisson’s ratio in various zeolites such as natrolite

(NAT) and thomsonite (THO) [41, 42]. Nevertheless, as

discussed elsewhere [41, 42], in real systems such as NAT

and THO, the idealised rotating squares model is too

simplistic to capture the complex deformations that occur

when these systems are uniaxially stretched, and in fact, a

more complex model has been derived where the squares

are treated as semi-rigid objects which change shape whilst

rotating relative to each other [41, 42].

In this work we investigate through analytical modelling

the properties of systems made from squares connected

together from their corners (as illustrated in Fig. 1) which

deform solely through changes in length of the sides of the

squares (henceforth referred to as the ‘stretching squares’

model, see Figs. 1b and 2). In other words, we discuss the

behaviour of a model based on squares which are con-

nected with an identical topology as the ‘rotating squares’

system (see Fig. 1a). In this model, the sides of the squares

are constructed from piston-like elements at a fixed angle

to each other which permit the squares to change their side

lengths to become rectangles (or squares of different sizes)

without changing the angles in the system.

Analytical model

In this section we derive equations to describe the in-plane

mechanical properties of the stretching squares system

illustrated in Fig. 1b.

(a)

(b)

2Ox

2Ox

Pulling
in Ox1

Pulling
in Ox1

θ

θ θ

Fig. 1 (a) The ‘rotating squares’ mechanism where the squares rotate

relative to each other, i.e. there is a change in the angle h, and (b) the

‘stretching squares’ mechanism, i.e. the angle h remains constant but

the lengths of the sides of the squares change

σσ

(a)

σ σ

(b)

Fig. 2 (a) An illustration of the ‘stretching squares’ mechanism for a

structure constructed from ‘squares’ having sides made from piston-

like elements as shown in (b)

1 The Poisson’s ratio of the idealised rotating squares system is

undefined when the squares are at 90o to each other, i.e. when the

structure is fully open and cannot expand any further. At this point,

the Young’s modulus of the idealised hinging model is infinite.
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As shown in Fig. 3 this ‘connected squares’ system may

be described by two unit cells one of which (Fig. 3a) contains

four squares and the other (Fig. 3b) two squares per unit cell.

It is easy to show that the system in Fig. 3a (henceforth

referred to as Orientation I) is oriented at 45o to the system in

Fig. 3b (henceforth referred to as Orientation II) and that in

these orientations, the properties for loading in the Ox1

direction are the same as the properties for loading in the Ox2

direction due to the symmetry of the structures.

For both Orientations I and II (and only these orienta-

tions), uniaxial loading of this system in any of the Ox1 and

Ox2 directions will not result in a shear strain and thus, the

elements s13 and s23 of the compliance matrices (and from

symmetry requirements of the matrices, s31 and s32) are

zero, i.e.:

sI
13 ¼ sI

23 ¼ sI
31 ¼ sI

32 ¼ 0 ð4Þ

sII
13 ¼ sII

23 ¼ sII
31 ¼ sII

32 ¼ 0 ð5Þ

where in order to distinguish between the properties of the

system in the two orientations, we have used the super-

scripts I and II to refer to the properties of the system in

Orientations I and II, respectively. (This nomenclature will

be used throughout this paper.)

The existence of these two unit cells (one oriented at 45o

to the other) and the symmetry of the system provide a

simplified method for deriving the full (3 9 3) compliance

matrix of these systems. In fact, as shown in Appendix A,

we may derive the Young’s moduli and Poisson’s ratios for

one orientation and, with the help of standard transforma-

tion techniques, use these to obtain the shear properties of

the other orientation [43, 44] via the following relations2:

GII
12 ¼

EI
1

2 1þ mI
12

� � & GI
12 ¼

EII
1

2 1þ mII
12

� � ð6Þ

where G12 is the on-axis shear modulus, E1 is the Young’s

modulus for loading in the Ox1 direction and m12 is the

Poisson’s ratio in the Ox1–Ox2 plane for loading in the Ox1

direction. As stated above, the superscripts I and II are used

to refer to the properties of the system in Orientations I and

II, respectively.

In view of all this, to derive the full (3 9 3) compliance

matrix for these systems we will first obtain the on-axis

Poisson’s ratios and Young’s moduli for Orientations I and

II and then use these to infer the shear moduli. In this way

we will obtain all the non-zero elements of the compliance

matrix for the properties in the two orientations.

The on-axis Poisson’s ratios and Young’s moduli

for Orientation I

To derive the in-plane on-axis mechanical properties for

loading in the Ox1 direction for Orientation I, from sym-

metry, we may simply consider the properties of one-fourth

of the unit cell given in Fig. 1a, which is specifically

illustrated in Fig. 4. For this system the dimensions of the

projections of one-fourth of the larger unit cell with Ori-

entation I in the OxI
i directions, the XI

i ’s, are given by:

XI
1 ¼ XI

2 ¼ XI ¼ l sin
h
2

� �
þ cos

h
2

� �� �

¼ l½sinð/Þ þ cosð/Þ� ð7Þ

XI
3 ¼ z ð8Þ

where l is the length of the sides of the square; h is the

angle between the squares; and / is the angle between the

squares and the OxI
i axis (i = 1, 2) that, for non-sheared

unit cells, corresponds to half h as indicated in Fig. 4.

I
2Ox

I
1Ox

II
2Ox

II
1Ox

I
2Ox

I
1Ox

II
2Ox

II
1Ox

45o

(a) (b)

(c)

Fig. 3 The unit cells used to derive the mechanical properties of the

‘stretching squares’ model for (a) Orientation I and (b) Orientation II.

(c) The geometric relation between the two orientations

A

B

C

Dl
I

1X

I
2X

A

B

C

Dl

φ
F

F

F

F

(a) (b)

I
2Ox

I
1Ox

Fig. 4 One-fourth of an Orientation I unit cell showing (a) dimen-

sions and (b) forces

2 It is important to note that as discussed in Appendix A, these

relations are only applicable to systems where (1) the two orientations

for which we know the properties are at 45o to each other, (2) for both

orientations, the structure should have zero shear coupling coeffi-

cients and (3) the systems must exhibit ‘2D cubic symmetry’, i.e.

s11 = s22.
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If we consider a unit cell being subjected to a load rI
1 in

the OxI
1 direction, referring to Fig. 4, the forces acting in

the direction of the beams AB, CD, BC and DA are given

by:

PI
AB ¼ PI

CD ¼ FI sinð/Þ ð9Þ

and

PI
BC ¼ PI

AD ¼ FI cosð/Þ ð10Þ

where the subscripts indicate along which beam the force is

acting and FI relates to rI
1 through:

FI ¼ 1

2
rI

1XI
2XI

3 ð11Þ

Therefore, the changes in the length of the beams AB,

CD, BC and DA due to the stress rI
1 are given by:

dI
AB ¼ dI

CD ¼
PI

AB

Ks

¼ PI
CD

Ks

¼ rI
1XI

2XI
3 sin /ð Þ

2Ks

ð12Þ

and

dI
BC ¼ dI

DA ¼
PI

BC

Ks

¼ PI
DA

Ks

¼ rI
1XI

2XI
3 cos /ð Þ

2Ks

ð13Þ

where Ks is the stretching force constant per unit length of

the beams.

The strains in the OxI
1 and OxI

2 directions may be defined

in terms of the displacements of the individual beams AB

and BC (or CD and DA) as follows:

eI
1 ¼

DXI
1

XI
1

¼ dI
AB sin /ð Þ þ dI

BC cos /ð Þ
XI

1

ð14Þ

and

eI
2 ¼

DXI
2

XI
2

¼ dI
AB cos /ð Þ þ dI

BC sin /ð Þ
XI

2

ð15Þ

where since XI
1 ¼ XI

2 ¼ XI and XI
3 ¼ z these strains

simplify to:

eI
1 ¼

DXI
1

XI
1

¼ z

2Ks

rI
1 ð16Þ

and

eI
2 ¼

DXI
2

XI
2

¼ z cos /ð Þ sin /ð Þ
Ks

rI
1 ¼

z sin 2/ð Þ
2Ks

rI
1

¼ z sin hð Þ
2Ks

rI
1 ð17Þ

Thus, the Poisson’s ratio and Young’s modulus for

loading in the OxI
1 direction are given by:

mI
12 ¼ �

eI
2

eI
1

¼ � sin hð Þ ð18Þ

EI
1 ¼

rI
1

eI
1

¼ 2Ks

z
ð19Þ

Note that, from symmetry, the Poisson’s ratio and

Young’s modulus for loading in the OxI
2 direction are

equal to their respective values for loading in the OxI
1

direction, i.e.:

mI
21 ¼ mI

12 ¼ � sin hð Þ ð20Þ

EI
2 ¼ EI

1 ¼
2Ks

z
ð21Þ

The on-axis Poisson’s ratios and Young’s moduli

for Orientation II

Here we consider the unit cell illustrated in Fig. 5. For this

system, the projections of the undeformed squares in the

OxII
i directions, the XII

i ‘s, are given by:

XII
1 ¼ XII

2 ¼ XII ¼ 2l cos
p
4
� h

2

� �
¼ 2l cos að Þ ð22Þ

XII
3 ¼ z ð23Þ

where a is the acute angle between the sides of the squares

and the OxII
i directions (i = 1, 2) as shown in Fig. 5a.

The force acting on the sides of the squares and their

corresponding change in length can be obtained in a

similar manner as that used for Orientation I. However,

this time the whole unit cell needs to be considered. As

illustrated in Fig. 5b, only the beams parallel to CD will

experience a change in length as a result of a stress rII
1 in

the OxII
1 direction, i.e. the changes in lengths in the

beams are given by:

dII
BC ¼ dII

AD ¼ 0 ð24Þ

and

dII
CD ¼ dII

AB ¼
PII

CD

Ks

¼ PII
AB

Ks

¼ 1

2Ks

rII
1 XII

2 XII
3 cosðaÞ ð25Þ

where

(a) (b)

Fig. 5 An Orientation II unit cell showing (a) dimensions and (b)

forces
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PII
CD ¼ PII

AB ¼ FII cosðaÞ

where FII relates to rII
1 through:

FII ¼ 1

2
rII

1 XII
2 XII

3 ð26Þ

The strains in the OxII
1 and OxII

2 directions may be

defined in terms of the change in lengths of the single

beams as before:

eII
1 ¼

DXII
1

XII
1

¼ 2dII
CD cos að Þ

XII
1

¼ z cos2ðaÞ
Ks

rII
1 ð27Þ

eII
2 ¼

DXII
2

XII
2

¼ 2dII
BC sin að Þ

XII
2

¼ 0 ð28Þ

since XII
1 ¼ XII

2 ¼ XII and XII
3 ¼ z:

Thus, the Poisson’s ratio and Young’s modulus for

loading in the OxII
1 direction are given by:

mII
12 ¼ �

eII
2

eII
1

¼ 0 ð29Þ

and

EII
1 ¼

rII
1

eII
1

¼ Ks

z cos2 að Þ ¼
Ks

z cos p
4

� �
cos h

2

� �
þ sin p

4

� �
sin h

2

� �� �2

¼ 2Ks

z 1þ sin hð Þ½ � ð30Þ

Note that, once again, from symmetry, the Poisson’s ratio

and Young’s modulus for loading in the OxII
2 direction are

equal to their respective values for loading in the OxII
1 direction.

The on-axis shear behaviour

As discussed above and shown in Appendix A, the shear

modulus for Orientation I can be related to the on-axis

properties for loading in Orientation II to obtain:

GI
12 ¼

EII
1

2ð1þ mII
12Þ
¼ Ks

2z cos2ðaÞ ¼
Ks

z 1þ sin hð Þ½ � ð31Þ

and similarly, the shear modulus for Orientation II can be

related to the on-axis properties for loading in Orientation I

to obtain:

GII
12 ¼

EI
1

2 1þ mI
12

� � ¼ Ks

z 1� sin hð Þ½ � ð32Þ

Summary and off-axis properties

To summarise, the on-axis mechanical properties of the

two orientations are given by the (3 9 3) compliance

matrices which relates stress to strain through e = Sr

where for Orientation I, S is given by:

SI ¼ z

2Ks

1 sin hð Þ 0

sin hð Þ 1 0

0 0 2þ 2 sin hð Þ

0

@

1

A ð33Þ

and for Orientation II, S is given by:

SII ¼ z

2Ks

1þ sin hð Þ 0 0
0 1þ sin hð Þ 0
0 0 2� 2 sin hð Þ

 !

ð34Þ

Using standard transformation techniques [44] and

taking the on-axis mechanical properties to be in

Orientation I, it is easy to show that for the stretching

mechanism the Poisson’s ratio mf
12, Young’s moduli Ef

1 and

shear modulus Gf
12 at an angle f to the Ox1-axis are given

by:

mf
12 ¼ �

cos2 2fð Þ sin hð Þ
1þ sin2 2fð Þ sin hð Þ

ð35Þ

Ef
1 ¼

2Ks

z 1þ sin2 2fð Þ sin hð Þ
� � ð36Þ

Gf
12 ¼

Ks

z 1þ cos 4fð Þ sin hð Þ½ � ð37Þ

where the superscript f is used to indicate that these

quantities refer to the off-axis property. Note that if f is set

equal to 45o, these expressions reduce to the respective

expressions for Orientation II as expected.

Results and discussion

The on-axis Poisson’s ratios, Young’ moduli and shear

moduli of this system for various values of the angle h
between the squares when the system is in Orientations I

and II are shown in Fig. 6, whilst plots of their respective

off-axis quantities are found in Figs. 7–9.

These plots (Figs. 6–9) and expressions derived above

for the mechanical properties at infinitesimally small

strains clearly suggest that although the mechanical

parameters obtained from the stretching squares mecha-

nism are remarkably different from those of the

corresponding rotating squares mechanism, this new

‘stretching squares’ system is still capable of exhibiting a

negative Poisson’s ratio. In this respect we note that this

behaviour is in sharp contrast with that of re-entrant and

non-re-entrant honeycombs which are well known for their

auxetic properties [45] where it has been shown that the

hinging mode of deformation always produces Poisson’s

ratios which are of opposite signs to that of the stretching

mode of deformation.
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Considering first the Poisson’s ratios for this novel

‘stretching squares’ model, we note that although the on-

axis and off-axis Poisson’s ratios are independent of the

size of the squares, they are dependent on:

(i) the angle between the squares h 2 0; 180o½ �, or

equivalently, the degree of openness of the structure;

(ii) the direction of loading f 2 0; 360o½ �
and can assume values between 0 and –1 (both values

included). This suggests that a square network that deforms

through a stretching mechanism can be adjusted to assume

specific pre-determined values of the Poisson’s ratio by

adjusting both the openness (h) of the structure and/or the

orientation of the structure relative to the direction of the

applied stress. This is not possible with the rotating squares

mechanism due to the isotropic nature of its Poisson’s ratio

(although isotropic systems are also extremely useful in

their own accord) irrespective of the degree of openness of

the structure (i.e. the angle between the squares). In this

respect, it is important to note that although the stretching

mechanism removes the isotropy that is shown by the

rotation mechanism, the stretching squares system is still

characterised by a high degree of symmetry since the

structure is highly symmetric (it belongs to the P4 g group)

which confers a rotational symmetry of order 4 to the

mechanism. This can be easily seen from the shape of the

compliance matrices which have s11 = s22 and can be

easily inferred from the expressions of the off-axis

properties.3

On-axis Poisson’s ratio (νν )
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Fig. 6 The variation of the

Poisson’s ratios, Young’s

moduli and shear moduli with

the angle between the squares h
when the system is loaded in (a)

Orientation I and (b)

Orientation II. It is assumed that

Ks = 1 and z = 1
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Fig. 7 Off-axis plots for the Poisson’s ratio of the stretching

mechanism at varying degrees of openness. f = 0o corresponds to

Orientation I. It is assumed that Ks = 1 and z = 1
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Fig. 8 Off-axis plots for the Young’s modulus of the stretching

mechanism at varying degrees of openness. f = 0o corresponds to

Orientation I. It is assumed that Ks = 1 and z = 1

90° 180°

θ = 90°

θ = 60°

θ = 45°

θ = 30°

θ = 0°

ζ
–180° –90° 0°
0

2

4

6

8

10

O
ff

 a
xi

s 
sh

ea
r

m
od

lu
s

(
)

ζ
G

12

Fig. 9 Off-axis plots for the shear modulus of the stretching

mechanism at varying degrees of openness. f = 0o corresponds to

Orientation I. It is assumed that Ks = 1 and z = 1

3 Equations 35 and 36 have the property of being periodic with

respect to f with a period equal to 90o giving mf
12 fð Þ ¼ mf

12 fþ 90oð Þ ¼
mf

21 and Ef
1 fð Þ ¼ Ef

1 fþ 90oð Þ ¼ Ef
2 fð Þ.
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Also, the range of values that the Poisson’s ratio can

attain is finite and an upper and lower bound for this

idealised system can be inferred from the off-axis expres-

sion of this quantity (Eq. 35, plotted in Fig. 7). This

expression suggests that for h 2 0; 180o½ � and f 2 0; 360o½ �,
the term � cos2 2fð Þ sin hð Þ (found in the numerator of

Eq. 35) takes values between -1 and 0, whilst the term

1þ sin2 2fð Þ sin hð Þ (a term found in the denominator of

Eq. 35) takes values in between 1 and 2. Thus, since the

sign of the numerator is always negative whilst the sign of

the denominator is always positive and the numerator has a

magnitude that is always smaller than or equal to that of the

denominator, the Poisson’s ratio for any conformation and

direction of loading will have a value between 0 and -1.

These boundaries are clearly illustrated in the off-axis plots

in Fig. 7.

The locations of the maxima and minima can be derived

from Eq. 35 by first differentiating mf
12 with respect to f;

setting the result equal to zero in order to determine the

location of the turning points and then looking at the sec-

ond derivatives to establish the nature of these turning

points (see Appendix B). This reveals:

(i) a minimum when f ¼ 0; �90o; �180o; i.e. when the

structure is loaded on-axis in Orientation I, which

corresponds to Poisson’s ratio of � sin hð Þ; and

(ii) a maximum of zero when f ¼ �45o; �135o; i.e.

when the structure is loaded on-axis in Orientation II.

Thus, the most auxetic configuration exhibited by this

system occurs when h = 90 with f ¼ 0; �90o; �180o (on-

axis in Orientation I) giving the upper bound Poisson’s

ratio of -1.

The points when f ¼ �n45o n 2 Z also correspond to

extreme values of the Young’s moduli and shear moduli

where at f ¼ 0; �90o; �180o (on-axis in Orientation I), the

moduli are at a minimum whilst when f ¼ �45o; �135o

(on-axis in Orientation II) the moduli are at a maximum.

It is important to note that, with the exception of the system

with h ¼ 90o; where the shear moduli are infinite when

f ¼ �45o; �135o (on-axis in Orientation II),4 the Young’s

and shear moduli of the idealised stretching squares model

always assume finite values. This means that the structure is

never ‘locked’ when stretched or sheared (apart for h ¼ 90o

when shearing on-axis).

This behaviour of the moduli is once again in contrast

with that of the idealised ‘rotating squares’ model, since in

the latter, the Young’s modulus (i) is always isotropic

(although this is dependent on h) and (ii) assumes an

infinite value when h ¼ 90o which corresponds to the point

when the structure is fully opened and hence locked. Fur-

thermore, the rotating squares model always exhibits an

infinite shear modulus, i.e. cannot be sheared.

Another very interesting property of this ‘stretching

squares’ model is the behaviour of the Poisson’s ratio for

the fully closed structure (h ¼ 0o or h ¼ 180o), when vf
12

becomes isotropic with a value of zero. Such behaviour,

although not a very common property, is of great practical

importance since materials having a zero Poisson’s ratio

can be useful in many practical applications (e.g. they may

be easily inserted into / removed from crevices).5 Such an

important property cannot be obtained from the idealised

rotating squares model which only affords Poisson’s ratios

of -1.

Another difference between the properties of the idea-

lised ‘rotating squares’ model [35–37] and the ‘stretching

squares’ model presented here is that, whilst those of the

idealised ‘rotating squares’ model were strain independent,

the mechanical properties of the ‘stretching squares’ model

presented here is strain dependent. In this respect, it is

important to highlight that the expressions derived here

represent the Poisson’s ratios and moduli at infinitesimally

small strains. In fact, one should note that when these sys-

tems are deformed, the squares change shape to become

rectangles, in which case the expressions derived here for

squares would not apply any more.

Before we conclude this discussion it is important to

highlight the point that the expressions for the Poisson’s

ratio derived here are independent of the sizes of the

squares.6 This suggests that this ‘stretching squares’ model

can be implemented at any scale, ranging from the macro-

scale to the micro- or nano- (molecular level) scale where

the system may be treated as a material. Thus, we expect

that this model is likely to be of use to scientists and

engineers who may wish to design real materials which

mimic the behaviour of this idealised model, or to help them

understand the behaviour of existing systems which may

exhibit similar properties (e.g. similar nano- or micro-

structures) to the one described here. In this respect, we note

that as discussed elsewhere [35–37] there are various

inorganic crystalline materials which are characterised by

4 The shear modulus approaches infinity when the denominator of

Eq. 37 is equal to zero, something that is attained when

1þ cos 4fð Þ sin hð Þ ¼ 0. This equation is satisfied if sin hð Þ ¼ 1 and

cos 4fð Þ ¼ �1 thus giving as possible solutions h ¼ 90o and

f ¼ �45o;�135o.

5 The best known example of a material which exhibits zero

Poisson’s ratios is cork. Such materials are important as they do not

get thinner or fatter when stretched or compressed and this makes

cork ideal for wine-bottle stoppers. As discussed by Prof. R.S. Lakes

‘‘The cork must be easily inserted and removed, yet it also must

withstand the pressure from within the bottle. Rubber, with a

Poisson’s ratio of 0.5, could not be used for this purpose because it

would expand when compressed into the neck of the bottle and would

jam. Cork, by contrast, with a Poisson’s ratio of nearly zero, is ideal in

this application’’ [46].
6 All elastic structures can be implemented on different size scales

since it has long been known that elasticity theory has no length scale.
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having the geometry modelled as a projection of a plane,

e.g. systems involving octahedrally coordinated atoms [47],

or zeolites.

In such real systems, one is likely to find that the

idealised behaviour, where deformations occur solely

through the stretching mechanism, or indeed through any

other idealised mono-mode mechanism (e.g. the idealised

‘rotating squares’ model where the squares are perfectly

rigid and simply rotate relative to each other), is too sim-

plistic and idealistic to capture the complex deformations

that occur when materials are subjected to a load. Instead,

one would expect that the stretching mode of behaviour

will be accompanied by other modes of deformations,

which could also result in auxetic behaviour. The overall

properties exhibited by such multi-mode systems can be

derived using the principle of superposition and the resul-

tant behaviour would depend on the relative extent at

which each mechanism operates. Thus, for example, a

system which deforms through concurrent stretching and

relative rotations of the squares will tend to become more

isotropic with Poisson’s ratio close to -1 as the rotating

squares mechanism starts to dominate as discussed else-

where [48, 49].

Conclusion

In this work we have analysed a new way of achieving

negative Poisson’s ratio for a 2D system constructed

from squares. In particular, we discussed a system based

on the same structure as the ‘rotating squares’ model

with the difference that instead of having the squares

rotate relative to one another, the system now deforms

through the elongation or shortening of the sides of the

squares, i.e. through a ‘stretching’ mechanism. We

derived analytical expression for the on-axis Poisson’s

ratios and Young’s moduli for two orientations of this

system, which are at 45o to each other, and combined

these expressions to obtain the on-axis shear moduli thus

deriving the full (3 9 3) compliance matrices which

could then be transformed using standard off-axis tech-

niques to obtain the off-axis properties. Whilst this way

of deriving the shear properties of the system is in itself

innovative (see Appendix A), the most important result is

that we have been able to show that this idealised system

will always show some degree of auxeticity, a highly

desirable property, unless the angles between the squares

is 0o in which case the system exhibits isotropic Pois-

son’s ratios of zero.

We showed that the behaviour of this system is very

different from that of the ‘rotating squares’. In fact, in the

case of the stretching mechanism, the Poisson’s ratio has

been shown to exhibit a sinusoidal variation with the

direction of loading and at maximum auxeticity its value

can range between 0 and -1, depending on the angle

between the squares. This is much different from the

idealised rotating squares system which always exhibits

Poisson’s ratios of -1.

We hope that the interesting results yielded by the

analytical study of this novel method for generating auxetic

behaviour from connected squares will be of help to sci-

entists and engineers in their quest for the design and

synthesis of new materials which can be tailor-made to

meet specific mechanical demands, in particular, when

producing new auxetic materials.
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Appendix A: Derivation of the relationship between the

shear modulus and the Poisson’s ratio and Young’s

moduli in two orientations at 45o to each other for

systems with ‘‘2D cubic’’ symmetry

If the tensile r0i and shear s012 stresses in a coordinate sys-

tem Ox0i are known, it is possible to obtain the tensile ri and

shear s12 stresses in a coordinate system Oxi rotated at an

angle f with the Ox01-axis through the following standard

transformation equations [44]:

r1 ¼
r01 þ r02

2
þ r01 � r02

2
cos 2hð Þ þ s012 sin 2hð Þ

r2 ¼
r01 þ r02

2
� r01 � r02

2
cos 2hð Þ � s012 sin 2hð Þ

s12 ¼ �
r01 � r02

2
sin 2fð Þ þ s012 cos 2fð Þ ð38Þ

From these, it is possible to show that if the coordinate

system Oxi is rotated at an angle of f ¼ 45o to the Ox01-axis,

and r01 ¼ �r02 while s012 ¼ 0; the tensile and shear stresses

in the Oxi system are r1 ¼ r2 ¼ 0 and s12 ¼ r02 [44].

Applying this to Orientations I and II, we can conclude that

applying only the tensile strains rII
1 ¼ �rII

2 in Orientation II

is equivalent to having a shear stress sI
12 of magnitude rII

2 in

Orientation I.

Also the shear strain c12 in the coordinate system Ox1 is

related to the strains e0i along the Ox0i-axis and the shear

strain c012 through equation [44]:
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c12 ¼ � e01 � e02
� �

sin 2fð Þ þ c012 cos 2fð Þ ð39Þ

Thus the value of the shear strain in Orientation I is

related only to the strains eII
i in Orientation II via:

cI
12 ¼ eII

2 � eII
1 ð40Þ

The terms eII
1 and eII

2 are themselves linked to the applied

stresses in Orientation II through:

eII
1 ¼ sII

11r
II
1 þ sII

12r
II
2 þ sII

13s
II
12

eII
2 ¼ sII

21r
II
1 þ sII

22r
II
2 þ sII

23s
II
12 ð41Þ

So, if we now set rII
1 ¼ �rII

2 and sII
12 ¼ 0 to obtaining a

pure shear sI
12 ¼ rII

2 in Orientation I, we see that these

equations reduce to:

eII
1 ¼ �eII

2 ¼ sII
12 � sII

11

� �
sI

12 ð42Þ

Substituting Eq. 42 in Eq. 40 gives:

cI
12 ¼ 2sII

12 sII
11 � sII

12

� �
ð43Þ

The shear modulus for Orientation I is thus derived as:

GI
12 ¼

sI
12

cI
12

¼ 1

2ðsII
11 � sII

12Þ
ð44Þ

or in terms of the Poisson’s ratios and Young’s moduli in

Orientation II:

GI
12 ¼

EII
1

2ð1þ mII
12Þ

ð45Þ

Using analogous arguments, it can be shown that:

GII
12 ¼

EI
1

2ð1þ mI
12Þ

ð46Þ
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